CovIterSolvers.jl
CovIterSolvers.jl
provides a high-performance pipeline for covariance smoothing and functional principal component analysis using Krylov subspace methods.
API Reference
The following pages list all the functions and types available in the package.
CovIterSolvers.AbstractBlockGP
CovIterSolvers.AbstractBlockTensor
CovIterSolvers.AbstractEstimateMethod
CovIterSolvers.AdjointBlockOuter
CovIterSolvers.AdjointCovFwdTensor
CovIterSolvers.BSplineMethod
CovIterSolvers.BlockDiagonal
CovIterSolvers.BlockOuter
CovIterSolvers.BrownianBridge
CovIterSolvers.BrownianMotion
CovIterSolvers.CovFwdTensor
CovIterSolvers.CustomGP
CovIterSolvers.CustomKernel
CovIterSolvers.GaussianKernel
CovIterSolvers.IntegratedBM
CovIterSolvers.LaplacianKernel
CovIterSolvers.MaternKernel
CovIterSolvers.OrnsteinUhlenbeck
CovIterSolvers.RBFKernelMethod
BlockArrays.blocksizes
CovIterSolvers.:⊙
CovIterSolvers.block_outer
CovIterSolvers.compute_kernel
CovIterSolvers.conj_lanczos
CovIterSolvers.covariancekernel
CovIterSolvers.eval_covariance
CovIterSolvers.eval_fwd
CovIterSolvers.fpca
CovIterSolvers.loc_grid
CovIterSolvers.mean_fwd
CovIterSolvers.rand_block_diag
CovIterSolvers.sample_gp
CovIterSolvers.undef_block_diag
CovIterSolvers.zero_block_diag